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Abstract
We discuss steady-state mechanical dissipation at the interface between a
nematically ordered elastomer and a substrate of hard asperities. A ‘resin-like’
approximation is invoked, according to which the nematic director is assumed
to be rigidly coupled to the strain tensor in the elastomer. The resulting nematic
correction to the friction coefficient scales with the degree of nematic order as
Q2. If the elastomer intercedes at a sheared substrate–fluid interface, there
is an associated shortening of the effective hydrodynamic slip length seen by
the fluid. This scenario is relevant to the biological functioning of slug pedal
mucus.

1. Introduction

At a sheared interface between a viscoelastic medium and a rough substrate there is in general
a time-oscillatory strain response in the medium, which contributes to overall sliding friction.
Theoretical and experimental studies have shown this contribution to be particularly significant
for rubber, due to the combination in this case of low elastic moduli with high viscosity
constants [1, 2].

Rubber-like orders of magnitude are broadly reflected in the respective viscous and elastic
constants of nematic elastomers [3], so one expects to observe sliding friction of similar origin.
On the other hand, nematic ordering considerably enriches the viscoelastic characterization of
a medium in respect of the number of constants involved. A generalized account of sliding
friction taking all these into account would be a formidable undertaking, and will not be our
objective here. We present instead a very simple qualitative perspective, according to which
nematic ordering manifests itself via a perturbative modification of one of the rubber viscosity
constants.

2. Qualitative viscoelasticity

A defining characteristic of nematic LCs is their ability to transmit a torque. In a bulk nematic
fluid, the director field n(r) about a concentrated torque Γ at the origin is perturbed as [4]

δn(r) ∼ Γ/Kr, (1)

where K denotes the Frank constants governing director elasticity.
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In a nematic elastomer, this response is damped by local anchoring of the director to a
cross-link matrix [3, 5]. Conversely, strain elastic response to an external force F is damped
by concomitant director deformation. However, since the Frank elastic terms are second order
with respect to strain elasticity, this latter effect is negligible. Thus, for small strains in the
classical Hookean regime, we can write as usual for the displacement field in response to a
concentrated force at the origin [6]

u(r) ∼ F /Er, (2)

where E is Young’s modulus.
We neglect here the general anisotropy in E which characterizes a nematic elastomer.

Moreover, we will assume strong anchoring of the director to the cross-link matrix, to the
extent that the director is rigidly coupled to the strain tensor ui j in a linear reciprocity relation
δn ∼ ui j , again valid only for small strains. In this rigid-coupling sense, we are effectively
treating the medium as a nematic ‘resin’ [3].

These simplifications entail (i) that the director responds to a displacement force F as

δn(r) ∼ F /Er2, (3)

and (ii) that nematic dissipation of the form γ (∂tn)2, where γ has the dimensions of a viscosity,
can be expressed equivalently as a translational viscous dissipation η ∂t ui j ∂t ukl . We neglect
further anisotropic characterization of the viscosity.

3. Nematic contribution to sliding friction coefficient

Consider the sub-surface dissipation in an elastic medium as it slides with uniform velocity
vs along, say, the x-axis of a Cartesian coordinate frame. At the origin, a single hard asperity
penetrates the plane z = 0 of the surface, the tip exerting a concentrated perpendicular force
Fz on the medium.

In the linear elastic regime, and in the absence of nematic order, the dissipation density is
governed by two viscosity coefficients η and ζ [6]:

ε̇iso = 2η(∂t uik − 1
3δik ∂t ull)

2 + ζ(∂t ull)
2 = v2

s [2η(∂xuik − 1
3δik ∂x ull)

2 + ζ(∂x ull)
2] (4)

(with summation over repeated indices)
Substituting equation (2) and neglecting the difference between η and ζ , the volume

integration giving the total dissipation around the asperity tip has the form
∫

a
ε̇iso dV ∼ ηv2

s F2
z

E2a3
, (5)

where we identify the length scale a with the diameter of the tip.
Hence, an isotropic elastic medium sliding over a rough surface comprising a density n

of identical asperities is resisted by an effective friction force

n A

vs

∫
a
ε̇iso dV ∼ ηvs L2

nE2a3 A
, (6)

where A is the area and L the load supported by the asperities. Dividing this force by the load,
we define the sliding friction coefficient [2]

µiso ∼ ηvs L

nE2a3 A
. (7)
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An analogous nematic contribution follows by expanding in (γ − η). For example, if the
director is oriented along the z-axis (‘homeotropically’), then for small strains

nz � 1 and ni � uiz; i = x, y (8)

such that

γ (∂tn)2 � γ v2
s

∑
i=x,y

(∂x uiz)
2. (9)

Putting

ε̇ = ε̇iso + δε̇nem, (10)

with

δε̇nem � (γ − η)v2
s

∑
i=x,y

(∂x uiz)
2, (11)

volume integration yields a nematic component of the friction coefficient:

δµnem ∼ (γ − η)
vs L

nE2a3 A
. (12)

By analogy with the prediction γ ∼ Q2 which follows from the Landau–de Gennes theory
of thermotropic nematic fluids [4], with Q the nematic order parameter, we postulate

γ − η

η
∼ Q2, (13)

yielding

δµnem ∼ Q2ηvs L

nE2a3 A
. (14)

Nematic–isotropic (NI) transitions are ordinarily first order, with typically �Q � 0.3.
We expect therefore a corresponding discontinuity in the friction coefficient with the onset of
nematic order [7].

4. NI-switched hydrodynamic slip length

A related point can be made concerning effective hydrodynamic slip if an elastomer film
intercedes at a rough substrate shearing a fluid phase. We have in mind the established slippage-
modifying effects of grafting a polymer monolayer at a sheared substrate–fluid interface [8].

Consider the laminar flow profile v(z) depicted in figure 1. The thickness of the film
is assumed to be large with respect to a, such that the elastomer–fluid interface (‘i ’) can be
supposed flat and undeformed by the influence of the asperities at the opposing substrate–
elastomer interface. As above, the substrate is stationary in this frame of reference, the film
moving tangentially along the x-axis with uniform velocity vs . The boundary condition on
tangential flow is assumed to be ‘no slip’ [9], i.e., v(zi ) = vs in our picture. With respect to
the substrate, however, this entails a finite effective fluid–substrate slip length d defined by

d
dv

dz

∣∣∣∣
i

= vs . (15)

We obtain d from the steady-state criterion that viscous stress at the zi -interface, σxz =
η f dv/dz, where η f denotes the fluid viscosity, is balanced by the film–substrate friction stress.
Using the expressions of section 3,

diso ∼
(

η f

η

)
na3(E A/L)2, δdnem ∼ −Q2

(
η f

η

)
na3(E A/L)2. (16)
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Figure 1. The schematic diagram of the shearing discussed in section 4 of the text. Although the
fluid sees no-slip boundary conditions with respect to the elastomer, dissipation at the asperity–
elastomer contacts results in an effective hydrodynamic slip length with respect to the substrate.

In the limit of a large load L, hence high friction, d goes to zero and we recover a no-
slip effective substrate–fluid boundary condition v(zi ) = vs = 0. Less obviously, slippage
increases with the area of real contact ∼n Aa2 between the substrate and the film, and with the
elastic modulus E .

5. An example from nature: slug locomotion

Mucous secretions are glycoprotein hydrogels, in which the polymer component comprises
entangled protein backbones and rod-like polysaccharide side chains. Experimental evidence
has suggested that a degree of nematic ordering of the side chains takes place in vivo, apparently
associated with higher concentration local to a surface [11], such that mucus may sometimes
be regarded as a nematic elastomer, at least locally near a surface. The particular type of mucus
with which a slug supports itself is known as the ‘pedal’ mucus. During locomotion, the pedal
mucus layer is thought to undergo a ‘yield–heal’ cycle, alternating between elastic and fluid
rheological response [10].

It is interesting in this respect to tentatively interpret mucus–substrate shear mechanics
during the ‘yield’ part of the cycle according to our schematic figure. That is, we assume that
a nematically ordered viscoelastic film persists immediately adjacent to the substrate, while
the bulk of the pedal layer yields as fluid flow. According to our equation (16), nematic order
is associated with enhanced hydrodynamic grip during this part of the yield cycle, a property
which might have a functional impact.
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